Serveur d'exploration sur Mozart

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Global impact of road traffic on atmospheric chemical composition and on ozone climate forcing

Identifieur interne : 000157 ( PascalFrancis/Corpus ); précédent : 000156; suivant : 000158

Global impact of road traffic on atmospheric chemical composition and on ozone climate forcing

Auteurs : Ulrike Niemeier ; Claire Granier ; Luis Komblueh ; Stacy Walters ; Guy P. Brasseur

Source :

RBID : Pascal:06-0305932

Descripteurs français

English descriptors

Abstract

[1] Automobile emissions are known to contribute to local air pollution and to photochemical smog in urban areas. The impact of road traffic on the chemical composition of the troposphere at the global scale and on climate forcing is less well quantified. Calculations performed with the chemical transport MOZART-2 model show that the concentrations of ozone and its precursors (NOx, CO, and hydrocarbons) are considerably enhanced in most regions of the Northern Hemisphere in response to current surface traffic. During summertime in the Northern Hemisphere, road traffic has increased the zonally averaged ozone concentration by more than 10% in the boundary layer and in the extratropics by approximately 6% at 500 hPa and 2.5% at 300 hPa. The summertime surface ozone concentrations have increased by typically 1-5 ppbv in the remote regions and by 5-20 ppbv in industrialized regions of the Northern Hemisphere. The corresponding ozone-related radiative forcing is 0.05 Wm-2. In order to assess the sensitivity of potential changes in road traffic intensity, two additional model cases were considered, in which traffic-related emissions in all regions of the world were assumed to be on a per capita basis the same as in Europe and in the United States, respectively. In the second and most dramatic case, the surface ozone concentration increases by 30-50 ppbv (50-100%) in south Asia as compared to the present situation. Under this assumption, the global radiative forcing due to traffic-generated ozone reaches 0.27 Wm-2.

Notice en format standard (ISO 2709)

Pour connaître la documentation sur le format Inist Standard.

pA  
A01 01  1    @0 0148-0227
A03   1    @0 J. geophys. res.
A05       @2 111
A06       @2 D9
A08 01  1  ENG  @1 Global impact of road traffic on atmospheric chemical composition and on ozone climate forcing
A11 01  1    @1 NIEMEIER (Ulrike)
A11 02  1    @1 GRANIER (Claire)
A11 03  1    @1 KOMBLUEH (Luis)
A11 04  1    @1 WALTERS (Stacy)
A11 05  1    @1 BRASSEUR (Guy P.)
A14 01      @1 Max Planck Institute for Meteorology @2 Hamburg @3 DEU @Z 1 aut. @Z 3 aut. @Z 5 aut.
A14 02      @1 Service d'Aéronomie /L'Institut Pierre-Simon Laplace @2 Paris @3 FRA @Z 2 aut.
A14 03      @1 Cooperative Institute for Research in Environmental Sciences/ NOAA Aeronomy Laboratory @2 Boulder, Colorado @3 USA @Z 2 aut.
A14 04      @1 National Center for Atmospheric Research @2 Boulder, Colorado @3 USA @Z 4 aut.
A20       @2 D09301.1-D09301.13
A21       @1 2006
A23 01      @0 ENG
A43 01      @1 INIST @2 3144 @5 354000115592190280
A44       @0 0000 @1 © 2006 INIST-CNRS. All rights reserved.
A45       @0 29 ref.
A47 01  1    @0 06-0305932
A60       @1 P
A61       @0 A
A64 01  1    @0 Journal of geophysical research
A66 01      @0 USA
C01 01    ENG  @0 [1] Automobile emissions are known to contribute to local air pollution and to photochemical smog in urban areas. The impact of road traffic on the chemical composition of the troposphere at the global scale and on climate forcing is less well quantified. Calculations performed with the chemical transport MOZART-2 model show that the concentrations of ozone and its precursors (NOx, CO, and hydrocarbons) are considerably enhanced in most regions of the Northern Hemisphere in response to current surface traffic. During summertime in the Northern Hemisphere, road traffic has increased the zonally averaged ozone concentration by more than 10% in the boundary layer and in the extratropics by approximately 6% at 500 hPa and 2.5% at 300 hPa. The summertime surface ozone concentrations have increased by typically 1-5 ppbv in the remote regions and by 5-20 ppbv in industrialized regions of the Northern Hemisphere. The corresponding ozone-related radiative forcing is 0.05 Wm-2. In order to assess the sensitivity of potential changes in road traffic intensity, two additional model cases were considered, in which traffic-related emissions in all regions of the world were assumed to be on a per capita basis the same as in Europe and in the United States, respectively. In the second and most dramatic case, the surface ozone concentration increases by 30-50 ppbv (50-100%) in south Asia as compared to the present situation. Under this assumption, the global radiative forcing due to traffic-generated ozone reaches 0.27 Wm-2.
C02 01  2    @0 220
C02 02  3    @0 001E
C02 03  2    @0 001E01
C03 01  2  FRE  @0 Monde @5 01
C03 01  2  ENG  @0 global @5 01
C03 01  2  SPA  @0 Mundo @5 01
C03 02  2  FRE  @0 Route @5 02
C03 02  2  ENG  @0 roads @5 02
C03 02  2  SPA  @0 Carretera @5 02
C03 03  2  FRE  @0 Composition chimique @5 03
C03 03  2  ENG  @0 chemical composition @5 03
C03 04  2  FRE  @0 Ozone @5 04
C03 04  2  ENG  @0 ozone @5 04
C03 04  2  SPA  @0 Ozono @5 04
C03 05  2  FRE  @0 Climat @5 05
C03 05  2  ENG  @0 climate @5 05
C03 05  2  SPA  @0 Clima @5 05
C03 06  X  FRE  @0 Forçage @5 06
C03 06  X  ENG  @0 Forcing @5 06
C03 06  X  SPA  @0 Forzamiento @5 06
C03 07  X  FRE  @0 Pollution air @5 07
C03 07  X  ENG  @0 Air pollution @5 07
C03 07  X  SPA  @0 Contaminación aire @5 07
C03 08  X  FRE  @0 Smog @5 08
C03 08  X  ENG  @0 Smog @5 08
C03 08  X  SPA  @0 Smog @5 08
C03 09  2  FRE  @0 Zone urbaine @5 09
C03 09  2  ENG  @0 urban areas @5 09
C03 09  2  SPA  @0 Zona urbana @5 09
C03 10  2  FRE  @0 Troposphère @5 10
C03 10  2  ENG  @0 troposphere @5 10
C03 11  2  FRE  @0 Transport @5 11
C03 11  2  ENG  @0 transport @5 11
C03 11  2  SPA  @0 Transporte @5 11
C03 12  2  FRE  @0 Modèle @5 12
C03 12  2  ENG  @0 models @5 12
C03 12  2  SPA  @0 Modelo @5 12
C03 13  2  FRE  @0 Concentration @5 13
C03 13  2  ENG  @0 concentration @5 13
C03 13  2  SPA  @0 Concentración @5 13
C03 14  2  FRE  @0 Phénomène précurseur @5 14
C03 14  2  ENG  @0 precursors @5 14
C03 14  2  SPA  @0 Fenómeno precursor @5 14
C03 15  X  FRE  @0 Précurseur @5 15
C03 15  X  ENG  @0 Precursor @5 15
C03 15  X  SPA  @0 Precursor @5 15
C03 16  2  FRE  @0 Hydrocarbure @5 16
C03 16  2  ENG  @0 hydrocarbons @5 16
C03 16  2  SPA  @0 Hidrocarburo @5 16
C03 17  2  FRE  @0 Hémisphère Nord @5 17
C03 17  2  ENG  @0 Northern Hemisphere @5 17
C03 17  2  SPA  @0 Hemisferio norte @5 17
C03 18  X  FRE  @0 Courant superficiel @5 18
C03 18  X  ENG  @0 Surface current @5 18
C03 18  X  SPA  @0 Corriente superficial @5 18
C03 19  2  FRE  @0 Couche limite @5 19
C03 19  2  ENG  @0 boundary layer @5 19
C03 19  2  SPA  @0 Capa límite @5 19
C03 20  X  FRE  @0 Transfert radiatif @5 20
C03 20  X  ENG  @0 Radiative transfer @5 20
C03 20  X  SPA  @0 Transferencia radiativa @5 20
C03 21  2  FRE  @0 Analyse sensibilité @5 21
C03 21  2  ENG  @0 sensitivity analysis @5 21
C03 22  2  FRE  @0 Intensité @5 22
C03 22  2  ENG  @0 intensity @5 22
C03 22  2  SPA  @0 Intensidad @5 22
C03 23  2  FRE  @0 Europe @5 23
C03 23  2  ENG  @0 Europe @5 23
C03 23  2  SPA  @0 Europa @5 23
C03 24  2  FRE  @0 Etats Unis @2 NG @5 61
C03 24  2  ENG  @0 United States @2 NG @5 61
C03 24  2  SPA  @0 Estados Unidos @2 NG @5 61
C03 25  X  FRE  @0 Asie du sud @2 NG @5 62
C03 25  X  ENG  @0 South Asia @2 NG @5 62
C03 25  X  SPA  @0 Asia del sur @2 NG @5 62
C07 01  2  FRE  @0 Amérique du Nord
C07 01  2  ENG  @0 North America
C07 01  2  SPA  @0 America del norte
C07 02  X  FRE  @0 Asie @2 NG
C07 02  X  ENG  @0 Asia @2 NG
C07 02  X  SPA  @0 Asia @2 NG
N21       @1 198
N44 01      @1 OTO
N82       @1 OTO

Format Inist (serveur)

NO : PASCAL 06-0305932 INIST
ET : Global impact of road traffic on atmospheric chemical composition and on ozone climate forcing
AU : NIEMEIER (Ulrike); GRANIER (Claire); KOMBLUEH (Luis); WALTERS (Stacy); BRASSEUR (Guy P.)
AF : Max Planck Institute for Meteorology/Hamburg/Allemagne (1 aut., 3 aut., 5 aut.); Service d'Aéronomie /L'Institut Pierre-Simon Laplace/Paris/France (2 aut.); Cooperative Institute for Research in Environmental Sciences/ NOAA Aeronomy Laboratory/Boulder, Colorado/Etats-Unis (2 aut.); National Center for Atmospheric Research/Boulder, Colorado/Etats-Unis (4 aut.)
DT : Publication en série; Niveau analytique
SO : Journal of geophysical research; ISSN 0148-0227; Etats-Unis; Da. 2006; Vol. 111; No. D9; D09301.1-D09301.13; Bibl. 29 ref.
LA : Anglais
EA : [1] Automobile emissions are known to contribute to local air pollution and to photochemical smog in urban areas. The impact of road traffic on the chemical composition of the troposphere at the global scale and on climate forcing is less well quantified. Calculations performed with the chemical transport MOZART-2 model show that the concentrations of ozone and its precursors (NOx, CO, and hydrocarbons) are considerably enhanced in most regions of the Northern Hemisphere in response to current surface traffic. During summertime in the Northern Hemisphere, road traffic has increased the zonally averaged ozone concentration by more than 10% in the boundary layer and in the extratropics by approximately 6% at 500 hPa and 2.5% at 300 hPa. The summertime surface ozone concentrations have increased by typically 1-5 ppbv in the remote regions and by 5-20 ppbv in industrialized regions of the Northern Hemisphere. The corresponding ozone-related radiative forcing is 0.05 Wm-2. In order to assess the sensitivity of potential changes in road traffic intensity, two additional model cases were considered, in which traffic-related emissions in all regions of the world were assumed to be on a per capita basis the same as in Europe and in the United States, respectively. In the second and most dramatic case, the surface ozone concentration increases by 30-50 ppbv (50-100%) in south Asia as compared to the present situation. Under this assumption, the global radiative forcing due to traffic-generated ozone reaches 0.27 Wm-2.
CC : 220; 001E; 001E01
FD : Monde; Route; Composition chimique; Ozone; Climat; Forçage; Pollution air; Smog; Zone urbaine; Troposphère; Transport; Modèle; Concentration; Phénomène précurseur; Précurseur; Hydrocarbure; Hémisphère Nord; Courant superficiel; Couche limite; Transfert radiatif; Analyse sensibilité; Intensité; Europe; Etats Unis; Asie du sud
FG : Amérique du Nord; Asie
ED : global; roads; chemical composition; ozone; climate; Forcing; Air pollution; Smog; urban areas; troposphere; transport; models; concentration; precursors; Precursor; hydrocarbons; Northern Hemisphere; Surface current; boundary layer; Radiative transfer; sensitivity analysis; intensity; Europe; United States; South Asia
EG : North America; Asia
SD : Mundo; Carretera; Ozono; Clima; Forzamiento; Contaminación aire; Smog; Zona urbana; Transporte; Modelo; Concentración; Fenómeno precursor; Precursor; Hidrocarburo; Hemisferio norte; Corriente superficial; Capa límite; Transferencia radiativa; Intensidad; Europa; Estados Unidos; Asia del sur
LO : INIST-3144.354000115592190280
ID : 06-0305932

Links to Exploration step

Pascal:06-0305932

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Global impact of road traffic on atmospheric chemical composition and on ozone climate forcing</title>
<author>
<name sortKey="Niemeier, Ulrike" sort="Niemeier, Ulrike" uniqKey="Niemeier U" first="Ulrike" last="Niemeier">Ulrike Niemeier</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Max Planck Institute for Meteorology</s1>
<s2>Hamburg</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Granier, Claire" sort="Granier, Claire" uniqKey="Granier C" first="Claire" last="Granier">Claire Granier</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Service d'Aéronomie /L'Institut Pierre-Simon Laplace</s1>
<s2>Paris</s2>
<s3>FRA</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="03">
<s1>Cooperative Institute for Research in Environmental Sciences/ NOAA Aeronomy Laboratory</s1>
<s2>Boulder, Colorado</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Komblueh, Luis" sort="Komblueh, Luis" uniqKey="Komblueh L" first="Luis" last="Komblueh">Luis Komblueh</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Max Planck Institute for Meteorology</s1>
<s2>Hamburg</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Walters, Stacy" sort="Walters, Stacy" uniqKey="Walters S" first="Stacy" last="Walters">Stacy Walters</name>
<affiliation>
<inist:fA14 i1="04">
<s1>National Center for Atmospheric Research</s1>
<s2>Boulder, Colorado</s2>
<s3>USA</s3>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Brasseur, Guy P" sort="Brasseur, Guy P" uniqKey="Brasseur G" first="Guy P." last="Brasseur">Guy P. Brasseur</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Max Planck Institute for Meteorology</s1>
<s2>Hamburg</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">06-0305932</idno>
<date when="2006">2006</date>
<idno type="stanalyst">PASCAL 06-0305932 INIST</idno>
<idno type="RBID">Pascal:06-0305932</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">000157</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Global impact of road traffic on atmospheric chemical composition and on ozone climate forcing</title>
<author>
<name sortKey="Niemeier, Ulrike" sort="Niemeier, Ulrike" uniqKey="Niemeier U" first="Ulrike" last="Niemeier">Ulrike Niemeier</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Max Planck Institute for Meteorology</s1>
<s2>Hamburg</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Granier, Claire" sort="Granier, Claire" uniqKey="Granier C" first="Claire" last="Granier">Claire Granier</name>
<affiliation>
<inist:fA14 i1="02">
<s1>Service d'Aéronomie /L'Institut Pierre-Simon Laplace</s1>
<s2>Paris</s2>
<s3>FRA</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="03">
<s1>Cooperative Institute for Research in Environmental Sciences/ NOAA Aeronomy Laboratory</s1>
<s2>Boulder, Colorado</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Komblueh, Luis" sort="Komblueh, Luis" uniqKey="Komblueh L" first="Luis" last="Komblueh">Luis Komblueh</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Max Planck Institute for Meteorology</s1>
<s2>Hamburg</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Walters, Stacy" sort="Walters, Stacy" uniqKey="Walters S" first="Stacy" last="Walters">Stacy Walters</name>
<affiliation>
<inist:fA14 i1="04">
<s1>National Center for Atmospheric Research</s1>
<s2>Boulder, Colorado</s2>
<s3>USA</s3>
<sZ>4 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Brasseur, Guy P" sort="Brasseur, Guy P" uniqKey="Brasseur G" first="Guy P." last="Brasseur">Guy P. Brasseur</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Max Planck Institute for Meteorology</s1>
<s2>Hamburg</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Journal of geophysical research</title>
<title level="j" type="abbreviated">J. geophys. res.</title>
<idno type="ISSN">0148-0227</idno>
<imprint>
<date when="2006">2006</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Journal of geophysical research</title>
<title level="j" type="abbreviated">J. geophys. res.</title>
<idno type="ISSN">0148-0227</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Air pollution</term>
<term>Europe</term>
<term>Forcing</term>
<term>Northern Hemisphere</term>
<term>Precursor</term>
<term>Radiative transfer</term>
<term>Smog</term>
<term>South Asia</term>
<term>Surface current</term>
<term>United States</term>
<term>boundary layer</term>
<term>chemical composition</term>
<term>climate</term>
<term>concentration</term>
<term>global</term>
<term>hydrocarbons</term>
<term>intensity</term>
<term>models</term>
<term>ozone</term>
<term>precursors</term>
<term>roads</term>
<term>sensitivity analysis</term>
<term>transport</term>
<term>troposphere</term>
<term>urban areas</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Monde</term>
<term>Route</term>
<term>Composition chimique</term>
<term>Ozone</term>
<term>Climat</term>
<term>Forçage</term>
<term>Pollution air</term>
<term>Smog</term>
<term>Zone urbaine</term>
<term>Troposphère</term>
<term>Transport</term>
<term>Modèle</term>
<term>Concentration</term>
<term>Phénomène précurseur</term>
<term>Précurseur</term>
<term>Hydrocarbure</term>
<term>Hémisphère Nord</term>
<term>Courant superficiel</term>
<term>Couche limite</term>
<term>Transfert radiatif</term>
<term>Analyse sensibilité</term>
<term>Intensité</term>
<term>Europe</term>
<term>Etats Unis</term>
<term>Asie du sud</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">[1] Automobile emissions are known to contribute to local air pollution and to photochemical smog in urban areas. The impact of road traffic on the chemical composition of the troposphere at the global scale and on climate forcing is less well quantified. Calculations performed with the chemical transport MOZART-2 model show that the concentrations of ozone and its precursors (NOx, CO, and hydrocarbons) are considerably enhanced in most regions of the Northern Hemisphere in response to current surface traffic. During summertime in the Northern Hemisphere, road traffic has increased the zonally averaged ozone concentration by more than 10% in the boundary layer and in the extratropics by approximately 6% at 500 hPa and 2.5% at 300 hPa. The summertime surface ozone concentrations have increased by typically 1-5 ppbv in the remote regions and by 5-20 ppbv in industrialized regions of the Northern Hemisphere. The corresponding ozone-related radiative forcing is 0.05 Wm
<sup>-2</sup>
. In order to assess the sensitivity of potential changes in road traffic intensity, two additional model cases were considered, in which traffic-related emissions in all regions of the world were assumed to be on a per capita basis the same as in Europe and in the United States, respectively. In the second and most dramatic case, the surface ozone concentration increases by 30-50 ppbv (50-100%) in south Asia as compared to the present situation. Under this assumption, the global radiative forcing due to traffic-generated ozone reaches 0.27 Wm
<sup>-2</sup>
.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0148-0227</s0>
</fA01>
<fA03 i2="1">
<s0>J. geophys. res.</s0>
</fA03>
<fA05>
<s2>111</s2>
</fA05>
<fA06>
<s2>D9</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Global impact of road traffic on atmospheric chemical composition and on ozone climate forcing</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>NIEMEIER (Ulrike)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>GRANIER (Claire)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>KOMBLUEH (Luis)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>WALTERS (Stacy)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>BRASSEUR (Guy P.)</s1>
</fA11>
<fA14 i1="01">
<s1>Max Planck Institute for Meteorology</s1>
<s2>Hamburg</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>5 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Service d'Aéronomie /L'Institut Pierre-Simon Laplace</s1>
<s2>Paris</s2>
<s3>FRA</s3>
<sZ>2 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Cooperative Institute for Research in Environmental Sciences/ NOAA Aeronomy Laboratory</s1>
<s2>Boulder, Colorado</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
</fA14>
<fA14 i1="04">
<s1>National Center for Atmospheric Research</s1>
<s2>Boulder, Colorado</s2>
<s3>USA</s3>
<sZ>4 aut.</sZ>
</fA14>
<fA20>
<s2>D09301.1-D09301.13</s2>
</fA20>
<fA21>
<s1>2006</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>3144</s2>
<s5>354000115592190280</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2006 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>29 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>06-0305932</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Journal of geophysical research</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>[1] Automobile emissions are known to contribute to local air pollution and to photochemical smog in urban areas. The impact of road traffic on the chemical composition of the troposphere at the global scale and on climate forcing is less well quantified. Calculations performed with the chemical transport MOZART-2 model show that the concentrations of ozone and its precursors (NOx, CO, and hydrocarbons) are considerably enhanced in most regions of the Northern Hemisphere in response to current surface traffic. During summertime in the Northern Hemisphere, road traffic has increased the zonally averaged ozone concentration by more than 10% in the boundary layer and in the extratropics by approximately 6% at 500 hPa and 2.5% at 300 hPa. The summertime surface ozone concentrations have increased by typically 1-5 ppbv in the remote regions and by 5-20 ppbv in industrialized regions of the Northern Hemisphere. The corresponding ozone-related radiative forcing is 0.05 Wm
<sup>-2</sup>
. In order to assess the sensitivity of potential changes in road traffic intensity, two additional model cases were considered, in which traffic-related emissions in all regions of the world were assumed to be on a per capita basis the same as in Europe and in the United States, respectively. In the second and most dramatic case, the surface ozone concentration increases by 30-50 ppbv (50-100%) in south Asia as compared to the present situation. Under this assumption, the global radiative forcing due to traffic-generated ozone reaches 0.27 Wm
<sup>-2</sup>
.</s0>
</fC01>
<fC02 i1="01" i2="2">
<s0>220</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001E</s0>
</fC02>
<fC02 i1="03" i2="2">
<s0>001E01</s0>
</fC02>
<fC03 i1="01" i2="2" l="FRE">
<s0>Monde</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="2" l="ENG">
<s0>global</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="2" l="SPA">
<s0>Mundo</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="2" l="FRE">
<s0>Route</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="2" l="ENG">
<s0>roads</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="2" l="SPA">
<s0>Carretera</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="2" l="FRE">
<s0>Composition chimique</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="2" l="ENG">
<s0>chemical composition</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="2" l="FRE">
<s0>Ozone</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="2" l="ENG">
<s0>ozone</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="2" l="SPA">
<s0>Ozono</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="2" l="FRE">
<s0>Climat</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="2" l="ENG">
<s0>climate</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="2" l="SPA">
<s0>Clima</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Forçage</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Forcing</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Forzamiento</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Pollution air</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Air pollution</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Contaminación aire</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Smog</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Smog</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Smog</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="2" l="FRE">
<s0>Zone urbaine</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="2" l="ENG">
<s0>urban areas</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="2" l="SPA">
<s0>Zona urbana</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="2" l="FRE">
<s0>Troposphère</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="2" l="ENG">
<s0>troposphere</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="2" l="FRE">
<s0>Transport</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="2" l="ENG">
<s0>transport</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="2" l="SPA">
<s0>Transporte</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="2" l="FRE">
<s0>Modèle</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="2" l="ENG">
<s0>models</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="2" l="SPA">
<s0>Modelo</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="2" l="FRE">
<s0>Concentration</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="2" l="ENG">
<s0>concentration</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="2" l="SPA">
<s0>Concentración</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="2" l="FRE">
<s0>Phénomène précurseur</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="2" l="ENG">
<s0>precursors</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="2" l="SPA">
<s0>Fenómeno precursor</s0>
<s5>14</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Précurseur</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Precursor</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Precursor</s0>
<s5>15</s5>
</fC03>
<fC03 i1="16" i2="2" l="FRE">
<s0>Hydrocarbure</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="2" l="ENG">
<s0>hydrocarbons</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="2" l="SPA">
<s0>Hidrocarburo</s0>
<s5>16</s5>
</fC03>
<fC03 i1="17" i2="2" l="FRE">
<s0>Hémisphère Nord</s0>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="2" l="ENG">
<s0>Northern Hemisphere</s0>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="2" l="SPA">
<s0>Hemisferio norte</s0>
<s5>17</s5>
</fC03>
<fC03 i1="18" i2="X" l="FRE">
<s0>Courant superficiel</s0>
<s5>18</s5>
</fC03>
<fC03 i1="18" i2="X" l="ENG">
<s0>Surface current</s0>
<s5>18</s5>
</fC03>
<fC03 i1="18" i2="X" l="SPA">
<s0>Corriente superficial</s0>
<s5>18</s5>
</fC03>
<fC03 i1="19" i2="2" l="FRE">
<s0>Couche limite</s0>
<s5>19</s5>
</fC03>
<fC03 i1="19" i2="2" l="ENG">
<s0>boundary layer</s0>
<s5>19</s5>
</fC03>
<fC03 i1="19" i2="2" l="SPA">
<s0>Capa límite</s0>
<s5>19</s5>
</fC03>
<fC03 i1="20" i2="X" l="FRE">
<s0>Transfert radiatif</s0>
<s5>20</s5>
</fC03>
<fC03 i1="20" i2="X" l="ENG">
<s0>Radiative transfer</s0>
<s5>20</s5>
</fC03>
<fC03 i1="20" i2="X" l="SPA">
<s0>Transferencia radiativa</s0>
<s5>20</s5>
</fC03>
<fC03 i1="21" i2="2" l="FRE">
<s0>Analyse sensibilité</s0>
<s5>21</s5>
</fC03>
<fC03 i1="21" i2="2" l="ENG">
<s0>sensitivity analysis</s0>
<s5>21</s5>
</fC03>
<fC03 i1="22" i2="2" l="FRE">
<s0>Intensité</s0>
<s5>22</s5>
</fC03>
<fC03 i1="22" i2="2" l="ENG">
<s0>intensity</s0>
<s5>22</s5>
</fC03>
<fC03 i1="22" i2="2" l="SPA">
<s0>Intensidad</s0>
<s5>22</s5>
</fC03>
<fC03 i1="23" i2="2" l="FRE">
<s0>Europe</s0>
<s5>23</s5>
</fC03>
<fC03 i1="23" i2="2" l="ENG">
<s0>Europe</s0>
<s5>23</s5>
</fC03>
<fC03 i1="23" i2="2" l="SPA">
<s0>Europa</s0>
<s5>23</s5>
</fC03>
<fC03 i1="24" i2="2" l="FRE">
<s0>Etats Unis</s0>
<s2>NG</s2>
<s5>61</s5>
</fC03>
<fC03 i1="24" i2="2" l="ENG">
<s0>United States</s0>
<s2>NG</s2>
<s5>61</s5>
</fC03>
<fC03 i1="24" i2="2" l="SPA">
<s0>Estados Unidos</s0>
<s2>NG</s2>
<s5>61</s5>
</fC03>
<fC03 i1="25" i2="X" l="FRE">
<s0>Asie du sud</s0>
<s2>NG</s2>
<s5>62</s5>
</fC03>
<fC03 i1="25" i2="X" l="ENG">
<s0>South Asia</s0>
<s2>NG</s2>
<s5>62</s5>
</fC03>
<fC03 i1="25" i2="X" l="SPA">
<s0>Asia del sur</s0>
<s2>NG</s2>
<s5>62</s5>
</fC03>
<fC07 i1="01" i2="2" l="FRE">
<s0>Amérique du Nord</s0>
</fC07>
<fC07 i1="01" i2="2" l="ENG">
<s0>North America</s0>
</fC07>
<fC07 i1="01" i2="2" l="SPA">
<s0>America del norte</s0>
</fC07>
<fC07 i1="02" i2="X" l="FRE">
<s0>Asie</s0>
<s2>NG</s2>
</fC07>
<fC07 i1="02" i2="X" l="ENG">
<s0>Asia</s0>
<s2>NG</s2>
</fC07>
<fC07 i1="02" i2="X" l="SPA">
<s0>Asia</s0>
<s2>NG</s2>
</fC07>
<fN21>
<s1>198</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
<server>
<NO>PASCAL 06-0305932 INIST</NO>
<ET>Global impact of road traffic on atmospheric chemical composition and on ozone climate forcing</ET>
<AU>NIEMEIER (Ulrike); GRANIER (Claire); KOMBLUEH (Luis); WALTERS (Stacy); BRASSEUR (Guy P.)</AU>
<AF>Max Planck Institute for Meteorology/Hamburg/Allemagne (1 aut., 3 aut., 5 aut.); Service d'Aéronomie /L'Institut Pierre-Simon Laplace/Paris/France (2 aut.); Cooperative Institute for Research in Environmental Sciences/ NOAA Aeronomy Laboratory/Boulder, Colorado/Etats-Unis (2 aut.); National Center for Atmospheric Research/Boulder, Colorado/Etats-Unis (4 aut.)</AF>
<DT>Publication en série; Niveau analytique</DT>
<SO>Journal of geophysical research; ISSN 0148-0227; Etats-Unis; Da. 2006; Vol. 111; No. D9; D09301.1-D09301.13; Bibl. 29 ref.</SO>
<LA>Anglais</LA>
<EA>[1] Automobile emissions are known to contribute to local air pollution and to photochemical smog in urban areas. The impact of road traffic on the chemical composition of the troposphere at the global scale and on climate forcing is less well quantified. Calculations performed with the chemical transport MOZART-2 model show that the concentrations of ozone and its precursors (NOx, CO, and hydrocarbons) are considerably enhanced in most regions of the Northern Hemisphere in response to current surface traffic. During summertime in the Northern Hemisphere, road traffic has increased the zonally averaged ozone concentration by more than 10% in the boundary layer and in the extratropics by approximately 6% at 500 hPa and 2.5% at 300 hPa. The summertime surface ozone concentrations have increased by typically 1-5 ppbv in the remote regions and by 5-20 ppbv in industrialized regions of the Northern Hemisphere. The corresponding ozone-related radiative forcing is 0.05 Wm
<sup>-2</sup>
. In order to assess the sensitivity of potential changes in road traffic intensity, two additional model cases were considered, in which traffic-related emissions in all regions of the world were assumed to be on a per capita basis the same as in Europe and in the United States, respectively. In the second and most dramatic case, the surface ozone concentration increases by 30-50 ppbv (50-100%) in south Asia as compared to the present situation. Under this assumption, the global radiative forcing due to traffic-generated ozone reaches 0.27 Wm
<sup>-2</sup>
.</EA>
<CC>220; 001E; 001E01</CC>
<FD>Monde; Route; Composition chimique; Ozone; Climat; Forçage; Pollution air; Smog; Zone urbaine; Troposphère; Transport; Modèle; Concentration; Phénomène précurseur; Précurseur; Hydrocarbure; Hémisphère Nord; Courant superficiel; Couche limite; Transfert radiatif; Analyse sensibilité; Intensité; Europe; Etats Unis; Asie du sud</FD>
<FG>Amérique du Nord; Asie</FG>
<ED>global; roads; chemical composition; ozone; climate; Forcing; Air pollution; Smog; urban areas; troposphere; transport; models; concentration; precursors; Precursor; hydrocarbons; Northern Hemisphere; Surface current; boundary layer; Radiative transfer; sensitivity analysis; intensity; Europe; United States; South Asia</ED>
<EG>North America; Asia</EG>
<SD>Mundo; Carretera; Ozono; Clima; Forzamiento; Contaminación aire; Smog; Zona urbana; Transporte; Modelo; Concentración; Fenómeno precursor; Precursor; Hidrocarburo; Hemisferio norte; Corriente superficial; Capa límite; Transferencia radiativa; Intensidad; Europa; Estados Unidos; Asia del sur</SD>
<LO>INIST-3144.354000115592190280</LO>
<ID>06-0305932</ID>
</server>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Musique/explor/MozartV1/Data/PascalFrancis/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000157 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Corpus/biblio.hfd -nk 000157 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Musique
   |area=    MozartV1
   |flux=    PascalFrancis
   |étape=   Corpus
   |type=    RBID
   |clé=     Pascal:06-0305932
   |texte=   Global impact of road traffic on atmospheric chemical composition and on ozone climate forcing
}}

Wicri

This area was generated with Dilib version V0.6.20.
Data generation: Sun Apr 10 15:06:14 2016. Site generation: Tue Feb 7 15:40:35 2023